Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(9): e108693, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259572

RESUMO

Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered 'insulin refractory' IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based 'memory' of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states.


Assuntos
Hiperinsulinismo/metabolismo , Resistência à Insulina/fisiologia , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Insulina/metabolismo , Insulina/farmacologia , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos
2.
PLoS One ; 9(2): e88684, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533136

RESUMO

Previously we reported studies of XMetA, an agonist antibody to the insulin receptor (INSR). We have now utilized phage display to identify XMetS, a novel monoclonal antibody to the INSR. Biophysical studies demonstrated that XMetS bound to the human and mouse INSR with picomolar affinity. Unlike monoclonal antibody XMetA, XMetS alone had little or no agonist effect on the INSR. However, XMetS was a strong positive allosteric modulator of the INSR that increased the binding affinity for insulin nearly 20-fold. XMetS potentiated insulin-stimulated INSR signaling ∼15-fold or greater including; autophosphorylation of the INSR, phosphorylation of Akt, a major enzyme in the metabolic pathway, and phosphorylation of Erk, a major enzyme in the growth pathway. The enhanced signaling effects of XMetS were more pronounced with Akt than with Erk. In cultured cells, XMetS also enhanced insulin-stimulated glucose transport. In contrast to its effects on the INSR, XMetS did not potentiate IGF-1 activation of the IGF-1 receptor. We studied the effect of XMetS treatment in two mouse models of insulin resistance and diabetes. The first was the diet induced obesity mouse, a hyperinsulinemic, insulin resistant animal, and the second was the multi-low dose streptozotocin/high-fat diet mouse, an insulinopenic, insulin resistant animal. In both models, XMetS normalized fasting blood glucose levels and glucose tolerance. In concert with its ability to potentiate insulin action at the INSR, XMetS reduced insulin and C-peptide levels in both mouse models. XMetS improved the response to exogenous insulin without causing hypoglycemia. These data indicate that an allosteric monoclonal antibody can be generated that markedly enhances the binding affinity of insulin to the INSR. These data also suggest that an INSR monoclonal antibody with these characteristics may have the potential to both improve glucose metabolism in insulinopenic type 2 diabetes mellitus and correct compensatory hyperinsulinism in insulin resistant conditions.


Assuntos
Anticorpos Monoclonais/química , Antígenos CD/metabolismo , Glucose/metabolismo , Receptor de Insulina/metabolismo , Sítio Alostérico , Animais , Peptídeo C/química , Células CHO , Separação Celular , Cricetinae , Cricetulus , Diabetes Mellitus Tipo 2/metabolismo , Citometria de Fluxo , Humanos , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Insulina/química , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Biblioteca de Peptídeos , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais
3.
MAbs ; 6(1): 262-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24423625

RESUMO

Novel therapies are needed for the treatment of hypoglycemia resulting from both endogenous and exogenous hyperinsulinema. To provide a potential new treatment option, we identified XMetD, an allosteric monoclonal antibody to the insulin receptor (INSR) that was isolated from a human antibody phage display library. To selectively obtain antibodies directed at allosteric sites, panning of the phage display library was conducted using the insulin-INSR complex. Studies indicated that XMetD bound to the INSR with nanomolar affinity. Addition of insulin reduced the affinity of XMetD to the INSR by 3-fold, and XMetD reduced the affinity of the INSR for insulin 3-fold. In addition to inhibiting INSR binding, XMetD also inhibited insulin-induced INSR signaling by 20- to 100-fold. These signaling functions included INSR autophosphorylation, Akt activation and glucose transport. These data indicated that XMetD was an allosteric antagonist of the INSR because, in addition to inhibiting the INSR via modulation of binding affinity, it also inhibited the INSR via modulation of signaling efficacy. Intraperitoneal injection of XMetD at 10 mg/kg twice weekly into normal mice induced insulin resistance. When sustained-release insulin implants were placed into normal mice, they developed fasting hypoglycemia in the range of 50 mg/dl. This hypoglycemia was reversed by XMetD treatment. These studies demonstrate that allosteric monoclonal antibodies, such as XMetD, can antagonize INSR signaling both in vitro and in vivo. They also suggest that this class of allosteric monoclonal antibodies has the potential to treat hyperinsulinemic hypoglycemia resulting from conditions such as insulinoma, congenital hyperinsulinism and insulin overdose.


Assuntos
Anticorpos Monoclonais/imunologia , Hiperinsulinismo Congênito/imunologia , Receptor de Insulina/antagonistas & inibidores , Anticorpos de Cadeia Única/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/imunologia , Células CHO , Hiperinsulinismo Congênito/tratamento farmacológico , Hiperinsulinismo Congênito/patologia , Cricetinae , Cricetulus , Glucose/imunologia , Resistência à Insulina/imunologia , Camundongos , Ratos , Receptor de Insulina/imunologia , Anticorpos de Cadeia Única/farmacologia
4.
Obesity (Silver Spring) ; 21(2): 306-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23401297

RESUMO

OBJECTIVE: Interleukin-1ß (IL-1ß) has recently been implicated as a major cytokine that is involved in the pancreatic islet inflammation of type 2 diabetes mellitus. This inflammation impairs insulin secretion by inducing beta-cell apoptosis. Recent evidence has suggested that in obesity-induced inflammation, IL-1ß plays a key role in causing insulin resistance in peripheral tissues. DESIGN AND METHODS: To further investigate the pathophysiological role of IL-1ß in causing insulin resistance, the inhibitory effects of IL-1ß on several insulin-dependent metabolic processes in vitro has been neutralized by XOMA 052. The role IL-1ß plays in insulin resistance in adipose tissue was assessed using differentiated 3T3-L1 adipocytes and several parameters involved in insulin signaling and lipid metabolism were examined. RESULTS AND CONCLUSION: IL-1ß inhibited insulin-induced activation of Akt phosphorylation, glucose transport, and fatty acid uptake. IL-1ß also blocked insulin-mediated downregulation of suppressor of cytokine signaling-3 expression. Co-preincubation of IL-1ß with XOMA 052 neutralized nearly all of these inhibitory effects in 3T3-L1 adipocytes. These studies provide evidence, therefore, that IL-1ß is a key proinflammatory cytokine that is involved in inducing insulin resistance. These studies also suggest that the monoclonal antibody XOMA 052 may be a possible therapeutic to effectively neutralize cytokine-mediated insulin resistance in adipose tissue.


Assuntos
Adipócitos/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Resistência à Insulina , Interleucina-1beta/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/antagonistas & inibidores , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Metabolismo dos Lipídeos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
5.
BMC Endocr Disord ; 12: 31, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23194380

RESUMO

BACKGROUND: The use of chromium supplements is widespread for the prevention and treatment of diabetes mellitus but there are conflicting reports on efficacy, possibly reflecting discrepant effects across different populations. In the present studies, we test the hypothesis that chromium supplementation raises serum chromium levels and correspondingly improves insulin sensitivity. METHODS: A double blind placebo-controlled randomized trial was conducted on 31 non-obese, normoglycemic subjects. After baseline studies, the subjects were randomized to placebo or chromium picolinate 500 µg twice a day. The primary endpoint was change in insulin sensitivity as measured by euglycemic hyperinsulinemic clamp. Pre-specified secondary endpoints included fasting lipids, blood pressure, weight, body composition measured by DXA scan. RESULTS: After 16 weeks of chromium picolinate therapy there was no significant change in insulin sensitivity between groups (p=0.83). There was, however, a strong association between serum chromium and change in insulin resistance (ß = -0.83, p=0.01), where subjects with the highest serum chromium had a worsening of insulin sensitivity. This effect could not be explained by changes in physiological parameters such as body weight, truncal fat and serum lipids with chromium therapy. CONCLUSIONS: Chromium therapy did not improve insulin sensitivity in non-obese normoglycemic individuals. Further, subjects who have high serum chromium levels paradoxically had a decline in insulin sensitivity. Caution therefore should be exercised in recommending the use of this supplement. TRIAL REGISTRATION: The study was registered on the NIH registry (clinicaltrials.gov) and the identifier is NCT00846248.

6.
Diabetes ; 61(5): 1263-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22403294

RESUMO

Many patients with diabetes mellitus (both type 1 and type 2) require therapy to maintain normal fasting glucose levels. To develop a novel treatment for these individuals, we used phage display technology to target the insulin receptor (INSR) complexed with insulin and identified a high affinity, allosteric, human monoclonal antibody, XMetA, which mimicked the glucoregulatory, but not the mitogenic, actions of insulin. Biophysical studies with cultured cells expressing human INSR demonstrated that XMetA acted allosterically and did not compete with insulin for binding to its receptor. XMetA was found to function as a specific partial agonist of INSR, eliciting tyrosine phosphorylation of INSR but not the IGF-IR. Although this antibody activated metabolic signaling, leading to enhanced glucose uptake, it neither activated Erk nor induced proliferation of cancer cells. In an insulin resistant, insulinopenic model of diabetes, XMetA markedly reduced elevated fasting blood glucose and normalized glucose tolerance. After 6 weeks, significant improvements in HbA(1c), dyslipidemia, and other manifestations of diabetes were observed. It is noteworthy that hypoglycemia and weight gain were not observed during these studies. These studies indicate, therefore, that allosteric monoclonal antibodies have the potential to be novel, ultra-long acting, agents for the regulation of hyperglycemia in diabetes.


Assuntos
Anticorpos Monoclonais/farmacologia , Glicemia/fisiologia , Diabetes Mellitus Experimental/terapia , Receptor de Insulina/agonistas , Animais , Anticorpos Monoclonais/uso terapêutico , Especificidade de Anticorpos , Biomarcadores , Células CHO , Células Cultivadas , Cricetinae , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Organismos Livres de Patógenos Específicos
7.
PLoS One ; 6(5): e19878, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21589939

RESUMO

BACKGROUND: The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots. METHODOLOGY/PRINCIPAL FINDINGS: To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL) were assessed by DXA, MRI and (1)H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05), while there was no evidence for activation of p38 MAPK or IKKß. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005) while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005). IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H(2)O peak, P<0.05), who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls. CONCLUSIONS: This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the relative contributions of the various mediators of impaired insulin signaling in this population.


Assuntos
Resistência à Insulina , Insulina/metabolismo , MAP Quinase Quinase 4/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Adulto , Ativação Enzimática , Feminino , Humanos , Masculino , Fosforilação
8.
Prostate ; 68(11): 1232-40, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18491370

RESUMO

BACKGROUND: Nordihydroguaiaretic acid (NDGA) is an inhibitor of the IGF-1 receptor (IGF-1R) in breast and other cancers, and concomitantly inhibits tumor growth both in cultured cells and animals. The current study evaluates the effect of NDGA on the androgen-stimulated growth of human prostate cancer cells. METHODS: LAPC-4 prostate cancer cells in tissue culture were androgen starved for 3 days, 1 nM dihydrotestosterone (DHT) and other androgens were then added for up to 7 days, and cell proliferation measured. IGF-1R protein expression was measured by Western blot, and IGF-1R mRNA expression by quantitative PCR. IGF-1R receptor kinase activation was measured by ELISA. RESULTS: After 7 days, LAPC-4 growth was doubled by 1 nM DHT. NDGA had a rapid effect to inhibit IGF-1R autophosphorylation induced by IGF-1. DHT increased the expression of IGF-1R protein and mRNA levels. Maximal IGF-1R protein levels were observed 3 days after the addition of androgen. In addition, NDGA, at 10 microM or less, inhibited DHT-induced proliferation in both cells grown in plates and cells grown in soft agar. Androgen receptor (AR) studies by FRET revealed that NDGA had no conformational effects on the AR in response to ligand. CONCLUSIONS: NDGA blocks the DHT-induced growth of LAPC-4 prostate cancer cells by several mechanisms including rapid inhibition of the IGF-1R kinase, and a dose-dependent inhibition of androgen stimulation of IGF-1R expression. Clinical studies of this agent will determine its efficacy in the setting of androgen-dependent prostate cancer.


Assuntos
Antioxidantes/farmacologia , Di-Hidrotestosterona/farmacologia , Masoprocol/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Receptor IGF Tipo 1/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Interações Medicamentosas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/fisiopatologia , Conformação Proteica , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Endocr Rev ; 29(1): 62-75, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18199690

RESUMO

Insulin resistance is a major feature of most patients with type 2 diabetes mellitus (T2D). A number of laboratories have observed that PC-1 (membrane [corrected] glycoprotein plasma cell antigen 1; also termed [corrected] ectonucleotide pyrophosphatase phosphodiesterase 1 or ENPP1) [corrected] is either overexpressed or overactive in muscle, adipose tissue, fibroblasts, and other tissues of insulin-resistant individuals, both nondiabetic and diabetic. Moreover, PC-1 (ENPP1) overexpression [corrected] in cultured cells in vitro and in transgenic mice in vivo, [corrected] impairs insulin stimulation of insulin receptor (IR) activation and downstream signaling. PC-1 binds to the connecting domain of the IR alpha-subunit that is located in residues 485-599. The connecting domain transmits insulin binding in the alpha-subunit to activation of tyrosine kinase activation in the beta-subunit. When PC-1 is overexpressed, it inhibits insulin [corrected]induced IR beta-subunit tyrosine kinase activity. In addition, a polymorphism of PC-1 (K121Q) in various ethnic populations is closely associated with insulin resistance, T2D, and cardio [corrected] and nephrovascular diseases. The product of this polymorphism has a 2- to 3-fold increased binding affinity for the IR and is more potent than the wild-type PC-1 protein (K121K) in inhibiting the IR. These data suggest therefore that PC-1 is a candidate protein that may play a role in human insulin resistance and T2D by its overexpression, its overactivity, or both.


Assuntos
Resistência à Insulina , Diester Fosfórico Hidrolases/fisiologia , Pirofosfatases/fisiologia , Animais , Complicações do Diabetes , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Variação Genética , Humanos , Obesidade/metabolismo , Diester Fosfórico Hidrolases/análise , Diester Fosfórico Hidrolases/genética , Síndrome do Ovário Policístico , Polimorfismo Genético , Estrutura Quaternária de Proteína , Pirofosfatases/análise , Pirofosfatases/genética , Receptor de Insulina/fisiologia
10.
J Cell Biochem ; 103(2): 624-35, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17562544

RESUMO

We have reported that nordihydroguaiaretic acid (NDGA) inhibits the tyrosine kinase activities of the IGF-1 receptor (IGF-1R) and the HER2 receptor in breast cancer cells. Herein, we studied the effects of NDGA on the growth of estrogen receptor (ER) positive MCF-7 cells engineered to overexpress HER2 (MCF-7/HER2-18). These cells are an in vitro model of HER2-driven, ER positive, tamoxifen resistant breast cancer. NDGA was equally effective at inhibiting the growth of both parental MCF-7 and MCF-7/HER2-18 cells. Half maximal effects for both cell lines were in the 10-15 microM range. The growth inhibitory effects of NDGA were associated with an S phase arrest in the cell cycle and the induction of apoptosis. NDGA inhibited both IGF-1R and HER2 kinase activities in these breast cancer cells. In contrast, Gefitinib, an epidermal growth factor receptor inhibitor but not an IGF-1R inhibitor, was more effective in MCF-7/HER2-18 cells than in the parental MCF-7 cells and IGF binding protein-3 (IGFBP-3) was more effective against MCF-7 cells compared to MCF-7/HER2-18. MCF-7/HER2-18 cells are known to be resistant to the effects of the estrogen receptor inhibitor, tamoxifen. Interestingly, NDGA not only inhibited the growth of MCF-7/HER2-18 on its own, but it also demonstrated additive growth inhibitory effects when combined with tamoxifen. These studies suggest that NDGA may have therapeutic benefits in HER2-positive, tamoxifen resistant, breast cancers in humans.


Assuntos
Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Masoprocol/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Hormônio-Dependentes/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor IGF Tipo 1/antagonistas & inibidores , Adenocarcinoma/metabolismo , Antineoplásicos Hormonais/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Gefitinibe , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Hormônio-Dependentes/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Quinazolinas/farmacologia , Receptor ErbB-2/biossíntese , Receptor ErbB-2/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia
11.
J Cell Biochem ; 102(6): 1529-41, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17486636

RESUMO

Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Masoprocol/farmacologia , Neuroblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Camundongos Nus , Neuroblastoma/patologia , Fosforilação/efeitos dos fármacos , Propídio/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Comb Chem ; 8(5): 784-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16961415

RESUMO

Diarylurea (DAU) compounds, particularly species composed of a heteroaryl ring system conjugated through a urea linkage to a substituted arene, were previously identified by the screening of a diverse chemical library to be active against the insulin growth factor receptor (IGF-1R). DAU compounds 4{a,b} were synthesized in parallel by the coupling of aryl amines 2{a} with aryl isocyanates 3{b}. Preparative RP-HPLC purification was found necessary to remove an impurity 5{b}, the symmetric urea resulting from the hydrolytic degradation of aryl isocyanates. Two libraries of DAU compounds were prepared to perform preliminary optimization of the two-ring systems for inhibitory activity against IGF-1R. In the first library, we explored a series of heteroaryl ring systems and found the 4-aminoquinaldine ring system to be optimal among those evaluated. The second library fixed the 4-aminoquinaldine ring system and we evaluated a series of substituted arenes conjugated to it. Overall, eight compounds based on the 4-aminoquinaldine heteroaryl system were found to have moderate activity against IGF-1R with IC(50) values better than 40 microM.


Assuntos
Técnicas de Química Combinatória , Inibidores de Proteínas Quinases/química , Receptor IGF Tipo 1/antagonistas & inibidores , Ureia/química , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia
13.
Diabetes Care ; 29(7): 1535-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16801575

RESUMO

OBJECTIVE: IGF-binding protein (IGFBP)-1 is negatively regulated by insulin. We determined whether the measurement of IGFBP-1 in serum is a useful marker of insulin resistance. RESEARCH DESIGN AND METHODS: Twenty-three subjects underwent a euglycemic insulin clamp. Glucose disposal rates (M) were then correlated with measurements of IGFBP-1, fasting insulin levels, homeostasis model assessment (HOMA), and BMI. RESULTS: IGFBP-1 levels more strongly correlated with M (R = 0.73) than the other parameters such as BMI or HOMA. The level of this protein decreased in individuals who became more insulin sensitive by exercise training. CONCLUSIONS: These studies show a strong correlation between insulin sensitivity and the serum levels of IGFBP-1. These studies suggest, therefore, that measurement of this protein may be valuable in identifying those individuals with insulin resistance and those individuals who respond to interventional strategies.


Assuntos
Biomarcadores/sangue , Glicemia/metabolismo , Resistência à Insulina/fisiologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Insulina/fisiologia , Adulto , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade
14.
Mol Cancer Ther ; 5(4): 1079-86, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16648580

RESUMO

In breast and certain other cancers, receptor tyrosine kinases, including the insulin-like growth factor I receptor (IGF-IR), play an important role in promoting the oncogenic process. The IGF-IR is therefore an important target for developing new anti-breast cancer therapies. An initial screening of a chemical library against the IGF-IR in breast cancer cells identified a diaryl urea compound as a potent inhibitor of IGF-IR signaling. This class of compounds has not been studied as inhibitors of the IGF-IR. We studied the effectiveness of one diaryl urea compound, PQ401, at antagonizing IGF-IR signaling and inhibiting breast cancer cell growth in culture and in vivo. PQ401 inhibited autophosphorylation of the IGF-IR in cultured human MCF-7 cells with an IC50 of 12 micromol/L and autophosphorylation of the isolated kinase domain of the IGF-IR with an IC50 <1 micromol/L. In addition, PQ401 inhibited the growth of cultured breast cancer cells in serum at 10 micromol/L. PQ401 was even more effective at inhibiting IGF-I-stimulated growth of MCF-7 cells (IC50, 6 micromol/L). Treatment of MCF-7 cells with PQ401 was associated with a decrease in IGF-I-mediated signaling through the Akt antiapoptotic pathway. Twenty-four hours of treatment with 15 micromol/L PQ401 induced caspase-mediated apoptosis. In vivo, treatment with PQ401 (i.p. injection thrice a week) reduced the growth rate of MCNeuA cells implanted into mice. These studies indicate that diaryl urea compounds are potential new agents to test in the treatment of breast and other IGF-I-sensitive cancers.


Assuntos
Aminoquinolinas/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Compostos de Fenilureia/uso terapêutico , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/fisiologia , Transdução de Sinais/fisiologia , Ureia/farmacologia , Animais , Animais Geneticamente Modificados , Neoplasias da Mama/fisiopatologia , Caspases/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos
15.
Am J Physiol Endocrinol Metab ; 290(4): E746-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16278247

RESUMO

The ectoenzyme PC-1 is an insulin receptor inhibitor that is elevated in cells and tissues of humans with type 2 diabetes (T2D). We have recently shown that acute PC-1 overexpression in liver causes insulin resistance and glucose intolerance in mice (3), but the chronic effects of PC-1 overexpression on these functions are unknown. Herein we produced transgenic mice overexpressing the potent q allele of human PC-1 in muscle and liver. Compared with controls, these mice had 2- to 3-fold elevations of PC-1 content in liver and 5- to 10-fold elevations in muscle. In the fed state, the PC-1 animals had 100 mg/dl higher glucose levels and sixfold higher insulin levels compared with controls. During glucose tolerance tests, these PC-1 animals had peak glucose levels that were >150 mg/dl higher than controls. In vivo uptake of 2-deoxy-d-glucose in muscle during insulin infusion was decreased in the PC-1 animals. These in vivo data support the concept, therefore, that PC-1 plays a role in insulin resistance and hyperglycemia and suggest that animals with overexpression of human PC-1 in insulin-sensitive tissues may be important models to investigate insulin resistance.


Assuntos
Hiperglicemia/enzimologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Diester Fosfórico Hidrolases/biossíntese , Pirofosfatases/biossíntese , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Hiperglicemia/metabolismo , Hiperinsulinismo/enzimologia , Hiperinsulinismo/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo
16.
Breast Cancer Res Treat ; 94(1): 37-46, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16142439

RESUMO

Nordihydroguaiaretic acid (NDGA) is a phenolic compound isolated from the creosote bush Larrea divaricatta that has anti-cancer activities both in vitro and in vivo. We can now attribute certain of these anti-cancer properties in breast cancer cells to the ability of NDGA to directly inhibit the function of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu (HER2/neu) receptor. In MCF-7 human breast cancer cells, low micromolar concentrations of NDGA inhibited activation of the IGF-1R, and downstream phosphorylation of both the Akt/PKB serine kinase and the pro-apoptotic protein BAD. In mouse MCNeuA cells, NDGA also inhibited ligand independent phosphorylation of HER2/neu. To study whether this inhibitory effect in cells was due to a direct action on these receptors, we studied the IGF-1-stimulated tyrosine kinase activity of isolated IGF-1R, which was inhibited by NDGA at 10 muM or less. NDGA was also effective at inhibiting autophosphorylation of the isolated HER2/neu receptor at similar concentrations. In addition, NDGA inhibited IGF-1 specific growth of cultured breast cancer cells with an IC50 of approximately 30 muM. NDGA treatment (intraperitoneal injection 3 times per week) also decreased the activity of the IGF-1R and the HER2/neu receptor in MCNeuA cells implanted into mice. This inhibition of RTK activity was associated with decreased growth rates of MCNeuA cells in vivo. These studies indicate that the anti-breast cancer properties of NDGA are related to the inhibition of two important RTKs. Agents of this class may therefore provide new insights into potential therapies for this disease.


Assuntos
Neoplasias da Mama/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Masoprocol/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
Antioxid Redox Signal ; 7(7-8): 1040-52, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15998259

RESUMO

Reactive oxygen and nitrogen molecules have been typically viewed as the toxic by-products of metabolism. However, accumulating evidence has revealed that reactive species, including hydrogen peroxide, serve as signaling molecules that are involved in the regulation of cellular function. The chronic and/or increased production of these reactive molecules or a reduced capacity for their elimination, termed oxidative stress, can lead to abnormal changes in intracellular signaling and result in chronic inflammation and insulin resistance. Inflammation and oxidative stress have been linked to insulin resistance in vivo. Recent studies have found that this association is not restricted to insulin resistance in type 2 diabetes, but is also evident in obese, nondiabetic individuals, and in those patients with the metabolic syndrome. An increased concentration of reactive molecules triggers the activation of serine/threonine kinase cascades such as c-Jun N-terminal kinase, nuclear factor-kappaB, and others that in turn phosphorylate multiple targets, including the insulin receptor and the insulin receptor substrate (IRS) proteins. Increased serine phosphorylation of IRS reduces its ability to undergo tyrosine phosphorylation and may accelerate the degradation of IRS-1, offering an attractive explanation for the molecular basis of oxidative stress-induced insulin resistance. Consistent with this idea, studies with antioxidants such as vitamin E, alpha-lipoic acid, and N-acetylcysteine indicate a beneficial impact on insulin sensitivity, and offer the possibility for new treatment approaches for insulin resistance.


Assuntos
Resistência à Insulina/fisiologia , Estresse Oxidativo , Animais , Glucose/metabolismo , Humanos , Insulina/metabolismo , Oxirredução , Proteínas Serina-Treonina Quinases/metabolismo
18.
Nat Genet ; 37(8): 863-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16025115

RESUMO

We identified a locus on chromosome 6q16.3-q24.2 (ref. 1) associated with childhood obesity that includes 2.4 Mb common to eight genome scans for type 2 diabetes (T2D) or obesity. Analysis of the gene ENPP1 (also called PC-1), a candidate for insulin resistance, in 6,147 subjects showed association between a three-allele risk haplotype (K121Q, IVS20delT-11 and A-->G+1044TGA; QdelTG) and childhood obesity (odds ratio (OR) = 1.69, P = 0.0006), morbid or moderate obesity in adults (OR = 1.50, P = 0.006 or OR = 1.37, P = 0.02, respectively) and T2D (OR = 1.56, P = 0.00002). The Genotype IBD Sharing Test suggested that this obesity-associated ENPP1 risk haplotype contributes to the observed chromosome 6q linkage with childhood obesity. The haplotype confers a higher risk of glucose intolerance and T2D to obese children and their parents and associates with increased serum levels of soluble ENPP1 protein in children. Expression of a long ENPP1 mRNA isoform, which includes the obesity-associated A-->G+1044TGA SNP, was specific for pancreatic islet beta cells, adipocytes and liver. These findings suggest that several variants of ENPP1 have a primary role in mediating insulin resistance and in the development of both obesity and T2D, suggesting that an underlying molecular mechanism is common to both conditions.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Teste de Tolerância a Glucose , Obesidade/genética , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Adulto , Estudos de Casos e Controles , Criança , Haplótipos , Humanos , RNA Mensageiro/genética
19.
Metabolism ; 54(5): 598-603, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15877289

RESUMO

Obesity is associated with impaired insulin-stimulated glucose disposal in the skeletal muscle, but whether this is an intrinsic or acquired factor is unknown. In many patients with type 2 diabetes mellitus (T2D) and their nondiabetic relatives, who have a genetic predisposition for diabetes, insulin resistance is maintained in cultured muscle cells. To study the association of obesity with defects in insulin action, we investigated insulin stimulation of both insulin receptor (IR) autophosphorylation and subsequent glucose transport in primary skeletal muscle cell cultures obtained from both nonobese and obese nondiabetic subjects. In these 2 groups, there was no difference in the ability of insulin to induce autophosphorylation of the IR, phosphorylation of the downstream serine kinase Akt/PKB, or stimulation of glucose transport. Moreover, there were no major differences in cultured muscle cell content of either the IR, the IR antagonist PC-1, or GLUT 1 and GLUT 4. These data therefore indicate that the insulin resistance associated with obesity is not maintained in cultured muscle cells and suggest that this insulin resistance is an acquired feature of obesity.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Receptor de Insulina/metabolismo , Adulto , Transporte Biológico/efeitos dos fármacos , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Humanos , Resistência à Insulina , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Obesidade/patologia , Obesidade/fisiopatologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Diabetes ; 54(2): 367-72, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15677494

RESUMO

The ectoenzyme, plasma cell membrane glycoprotein-1 (PC-1), is an insulin receptor (IR) inhibitor that is elevated in cells and tissues of insulin-resistant humans. However, the effects of PC-1 overexpression on insulin action have not been studied in animal models. To produce mice with overexpression of PC-1 in liver, a key glucose regulatory organ in this species, we injected them with a PC-1 adenovirus vector that expresses human PC-1. Compared with controls, these mice had two- to threefold elevations of PC-1 content in liver but no changes in other tissues such as skeletal muscle. In liver of PC-1 animals, insulin-stimulated IR tyrosine kinase and Akt/protein kinase B activation were both decreased. In this tissue, the IR-dependent nuclear factor Foxo1 was increased along with two key gluconeogenic enzymes, glucose-6-phosphatase and phosphenolpyruvate carboxykinase. The PC-1 animals had 30-40 mg/dl higher glucose levels and twofold higher insulin levels. During glucose tolerance tests, these animals had peak glucose levels that were >100 mg/dl higher than those of controls. These in vivo data support the concept, therefore, that PC-1 plays a role in insulin resistance and suggest that animals with overexpression of human PC-1 in liver may be interesting models to investigate this pathological process.


Assuntos
Intolerância à Glucose/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Adenoviridae/genética , Animais , Glicemia/metabolismo , Clonagem Molecular , Vetores Genéticos , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/farmacologia , Pirofosfatases/genética , Pirofosfatases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...